# Ethyloboration of Selenium Dioxide and Selenium Bis(tert-butylimide) – Molecular Structure of an Organo-Substituted Eight-Membered [-BOSeO-]<sub>2</sub> Heterocycle<sup>[1]</sup>

Roland Köster\*a, Wilhelm Schüßlera, Roland Boeseb, Max Herberholdc, Silke Gerstmannc, and Bernd Wrackmeyer\*c

Max-Planck-Institut für Kohlenforschung<sup>a</sup>,

Kaiser-Wilhelm-Platz 1, D-45466 Mülheim a.d. Ruhr, Germany

Institut für Anorganische Chemie der Universität – GHS Essen<sup>b</sup>, Universitätsstraße 5-7, D-45117 Essen, Germany

Laboratorium für Anorganische Chemie, Universität Bayreuth<sup>c</sup>, Postfach 101251, D-95440 Bayreuth, Germany

Received December 20, 1995

**Key Words:** Selenium dioxide, 1,2-ethyloboration / Selenium diimide, 1,2-ethyloboration / Seleninic acid, ethane-Transborylation, OBEt<sub>2</sub>, O-9-BBN / Ethene, elimination / Amino(diethyl)boranes

Both selenium dioxide (1) and selenium bis(tert-butylimide) (2) react with triethylborane (A) by 1,2-ethyloboration. In the case of 1, ethane, ethene, diethylselane (4a), tetraethyldiboroxane (Et<sub>2</sub>B)<sub>2</sub>O (B), triethylboroxine (EtBO)<sub>3</sub> (D) and a cyclic compound [ $-Et_2BOSe(Et)O-]_2$  (5<sub>2</sub>) are formed after heating to 65 °C. Compound 5<sub>2</sub> is also formed when 1 reacts with B. Treatment of selenous acid (3) with A or, preferentially for synthetic purposes, with B provides further routes to 5<sub>2</sub>. The reaction of the diimide 2 with A starts already below -50 °C: a cyclic ethaneselenic acid derivative 6,  $Et_2BN(tBu)-Se(Et)NtBu$ , is formed, and 6 starts to decompose at -50 °C

by elimination of ethene to give finally (*tert*-butylamino)diethylborane (8), bis(diethylboryl)-*tert*-butylamine (9), and  $\rm Et_2Se~(4a)$ . Transborylation of  $\rm 5_2$  with (9-BBN)<sub>2</sub>O (C) affords [-(9-BBN)OSe(Et)O-]<sub>2</sub> ( $\rm 10_2$ ), which crystallizes in the monoclinic space group  $\rm P2_1/n$  with the lattice constants (118 K)  $\rm a=667.1(1)$ ,  $\rm b=1282.5(1)$ ,  $\rm c=1289.1(1)$  pm and  $\rm \beta=93.06(1)^\circ$ . All reactions were monitored by <sup>11</sup>B- and <sup>77</sup>Se-NMR spectroscopy. Furthermore, the reactions of 1 with A and B and the transborylations were studied by <sup>17</sup>O-NMR spectroscopy using the <sup>17</sup>O-enriched compounds  $\rm 10^{17}O$ ),  $\rm 10^{17}O$ ),  $\rm 10^{17}O$ ), and  $\rm 10^{17}O$ ).

More than 20 years ago it was shwon that selenium dioxide (1) reacts with triethylborane (A) in aqueous solution or in tetrahydrofuran (THF) to give diethylselane (4a) and diethyldiselane (4b)<sup>[2]</sup>. The formation and isolation of potential intermediates was not considered, and a radical mechanism was proposed for the *B/Se* alkyl transfer<sup>[2]</sup>. In continuing studies of the reactivity and synthetic application of A and organoboron-oxygen compounds such as (Et<sub>2</sub>B)O (B), (9-BBN)<sub>2</sub>O (C), and (EtBO)<sub>3</sub> (D)<sup>[3]</sup>, we have investigated their reactions with selenium dioxide (1), selenium bis(*tert*-butylimide) (2)<sup>[4]</sup>, and selenous acid (3). In addition, transborylations using C were attempted in order to prepare reasonably stable intermediates, hoping to take advantage of the higher crystallization tendency of the 9-BBN derivatives<sup>[3f]</sup>.

#### **Results and Discussion**

## 1,2-Ethyloboration of Selenium Dioxide (1): Synthesis of 2,4,4,6,8,8-Hexaethyl-1,3,5,7,2,6,4,8-tetraoxadiselena-diboratocane (5<sub>2</sub>)

When a suspension of SeO<sub>2</sub> (1) in Et<sub>3</sub>B (A) is heated at 65°C, a colorless solution is formed, and a mixture of ethane and ethene is liberated. In the <sup>11</sup>B-NMR spectra<sup>[5]</sup> of the reaction solution signals for (Et<sub>2</sub>B)<sub>2</sub>O (B) at  $\delta = 53.0$ , and for (EtBO)<sub>3</sub> (D) at  $\delta = 33.0$  are observed, and an additional broad <sup>11</sup>B resonance signal at  $\delta = 14.0$  ( $\Delta v_{1/2} = 300 \pm 10$  Hz) is assigned to 5<sub>2</sub>, the dimer of the 1,2-ethyloboration product of 1 [eq. (1)]. The <sup>77</sup>Se-NMR spectra<sup>[4b,6]</sup> show two signals, one at  $\delta = 235.0$  for Et<sub>2</sub>Se (4a) and the other one at  $\delta = 1168.0$  for 5<sub>2</sub>. Compound 5<sub>2</sub> is left as a colorless solid after all volatile material has been removed. If the reaction is carried out with <sup>17</sup>O-enriched 1(<sup>17</sup>O), <sup>17</sup>O-NMR spectra<sup>[7]</sup> show signals for B(<sup>17</sup>O) ( $\delta = 224.0$ ), D(<sup>17</sup>O) ( $\delta = 146.0$ ), and 5<sub>2</sub>(<sup>17</sup>O) ( $\delta = 130$ ) in accord with the <sup>11</sup>B-NMR spectra.

Compound  $\mathbf{5}_2$  is also formed in the reaction of 1 with an excess of  $(Et_2B)_2O$  (B). The <sup>17</sup>O-NMR spectrum shows signals for  $\mathbf{B}(^{17}O)$ ,  $\mathbf{D}(^{17}O)$ , and the broad signal at  $\delta=130$  corresponding to  $\mathbf{5}_2$ , by using  $\mathbf{B}(^{17}O)$ . In contrast, the reaction of  $(EtBO)_3$  (D) with 1 does not lead to  $\mathbf{5}_2$  but to a red-

brown reaction solution containing a mixture of compounds, some of which possess a BO<sub>3</sub> fragment ( $\delta^{11}B = 17.6$ ).

Treatment of selenous acid (3) with an excess of  $Et_3B$  (A) leads to complex mixtures consisting of B, D,  $Et_2BOH$ ,  $Et_2Se$  (4a),  $Et_2Se$  (4b) ( $\delta^{77}Se = 336.0$ ), 5<sub>2</sub>, and at least another selenium compound ( $\delta^{77}Se = 176.0$ ) which was not identified. The formation of 4a and 4b recalls previous findings for the reaction of 1 with A in water or  $THF^{[2]}$ . The reaction of 3 with an excess of B [eq. (2)] affords D,  $Et_2-BOH$ , a small amount of ethane and the dimer 5<sub>2</sub> (>70% yield), which can be purified by recrystallization or sublimation (>85 °C/0.01 Torr, with partial decomposition). Triethylboroxine (D) reacts with 3 without a defined result as observed for 1 and D (vide supra).

The molecular structures of  $\mathbf{5}_2$  in solution and in the solid state must be similar, considering the almost identical isotropic  $\delta^{77}$ Se values in both phases (solution:  $\delta = 1168$ ; solid state: 1174.5).

#### 1,2-Ethyloboration of Selenium Bis(tert-butylimide) (2)

The reaction of 2 with A [eq. (3)] starts already far below room temperature. After mixing of the compounds in  $[D_8]$ toluene at -78 °C and warming of the mixture to -50°C, all NMR data show that the selenium diimide 2  $(\delta^{77}\text{Se} = 1653.8^{\text{[4b]}})$  is no longer present. Under these conditions, there is clear evidence for the formation of Et<sub>2</sub>Se (4a), the four-membered ethaneseleninimidic amide derivative 6 ( $\delta^{11}B = 17.7$ ;  $\delta^{77}Se = 1010.0$ ), ethene (no ethane), (tert-butylamino)diethylborane (8) ( $\delta^{11}B = 46.5$ ), and bis(diethylboryl)-tert-butylamine (9) ( $\delta^{11}B = 57.9$ ). A weak signal in the <sup>77</sup>Se-NMR spectrum (-50 °C) at  $\delta$  = 711.0 is tentatively assigned to {tert-butylf(tert-butylamino)selenyl]amino}diethylborane (7), the most likely precursor of 8. After a few minutes at room temperature, compound 6 decomposes completely to 8, 9, and 4a. At room temperature, the <sup>77</sup>Se resonance at  $\delta = 711.0$ , tentatively assigned to 7, can no longer be detected.

Compound 6 results from 1,2-ethyloboration, corresponding to the reaction of 1 with A [eq. (1)]. The proposed structure for 6 as a monomer is based on the line width of its <sup>11</sup>B-NMR signal ( $\Delta v_{1/2} = 80 \pm 5$  Hz) which is too small for a dimer (compare with  $\Delta v_{1/2} \approx 300$  Hz for the <sup>11</sup>B-

NMR signal of the dimer 52 or an oligomer. Furthermore, all <sup>13</sup>C-NMR signals of 6 are very similar to those of its sulfur analogue which was prepared recently by a different route<sup>[8]</sup>. The decomposition of 6 with C<sub>2</sub>H<sub>4</sub> elimination takes place in the same way as observed for the sulfur analogue of 6; however, the sulfur compounds analogous to 7 and 8 are stable at room temperature for several days[8]. The olefin elimination was frequently observed to take place under mild reaction conditions in the case of alkanesulfinic acid derivatives<sup>[9]</sup> including ethane derivatives<sup>[10]</sup>. As expected, compound 7 must be much less stable than its sulfur analogue, and the apparently (indicated by the NMR spectra) more or less synchronous formation of the aminoborane 8, diborylamine 9, and Et<sub>2</sub>Se (4a) [eq. (3c,d)] suggests the intermediacy of [tBu-NSe] analogous to [R-NS] which is known to originate from derivatives of the type  $R(H)N-S-NR_2^{\prime}$ [11]. In the presence of an excess of Et<sub>3</sub>B, [tBu-NSe] can be trapped to give the diborylamine 9 and  $Et_2Se$  (4a) [eq. (3d)].

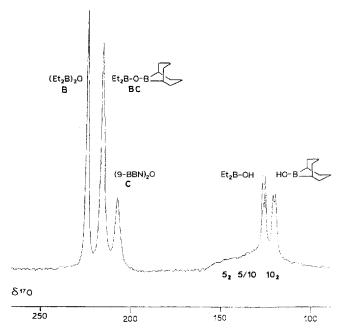
$$tBuN \xrightarrow{Se} NtBu \xrightarrow{excess} (a) \xrightarrow{excess} tBuN \xrightarrow{Se} NtBu (3)$$

$$tBuN \xrightarrow{Se} NtBu \xrightarrow{excess} tBuN \xrightarrow{Se} NtBu (3)$$

$$-c_2H_4 \downarrow (b)$$

$$[tBu-NSe] + Et_2B - NtBu \longleftrightarrow (c) tBuN \xrightarrow{Se} NtBu + 2A \downarrow (d) B \xrightarrow{H} TBuN \xrightarrow{BEt_2}$$

$$Et_2Se + (Et_2B)_2NtBu$$


$$4a 9$$

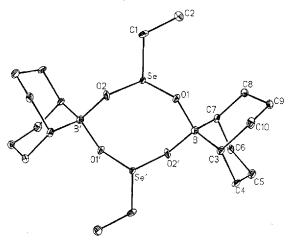
### Exchange of Boryl Groups Between Organoboron-Oxygen Compounds: Synthesis of Compound 10<sub>2</sub>

Since we failed to obtain crystals of  $5_2$  suitable for X-ray structural analysis, an O-transborylation reaction was carried out in order to exchange the  $Et_2B$  groups in  $5_2$  for 9-BBN groups. The equilibria shown in eq. (4) are shifted towards  $10_2$  because of its stability as a dimer and its low solubility in toluene. Crystals of  $10_2$  obtained from this reaction were directly suitable for X-ray structure analysis (vide infra). The <sup>11</sup>B-NMR spectrum of the reaction solution shows signals for  $5_2$ , 5/10, and  $10_2$  (not resolved) at  $\delta = 13-14$ , for C ( $\delta = 58.0$ ) and B ( $\delta = 53$ ), and at  $\delta = 55.0$  (two signals, just resolved) for the mixed oxide  $Et_2B-O-9$ -BBN (B/C).

The exchange of boryl groups becomes readily evident by studying the reaction of  $\mathbf{5}_2$  with either  $\mathbf{B}^{(17}\mathrm{O})$  or  $\mathbf{C}^{(17}\mathrm{O})$ . In the former case, the exchange takes place at room temperature in C<sub>6</sub>D<sub>6</sub> solution as shown by the <sup>17</sup>O-NMR spectrum with signals at  $\delta = 224.0$  for **B** and 130 for  $\mathbf{5_2}$ . If  $\mathbf{C}(^{17}\mathbf{O})$  is used, after heating at 50 °C in C<sub>6</sub>D<sub>6</sub> for 30 min the <sup>17</sup>O-NMR spectrum shows signals for C ( $\delta = 207.0$ ), B (224), and the mixed oxide  $Et_2B-O-9$ -BBN (B/C) (216.0). In the range between  $\delta^{17}O$  110 and 140, there are broad overlapping signals of the dimer 5<sub>2</sub>, the derivate 5/10 built formally from the monomers 5 and 10, containing one Et<sub>2</sub>B and one 9-BBN group, and of the dimer 10<sub>2</sub>. This exchange reaction is accompanied by decomposition (ethene elimination) and formation of Et<sub>2</sub>B-OH and 9-BBN-9-OH (see Figure 1). The exchange between  $5_2$  and  $D(^{17}O)$  proceeds fast at room temperature, and a <sup>17</sup>O-NMR spectrum of the C<sub>6</sub>D<sub>6</sub> solution shows the broad signal of  $5_2(^{17}O)$  ( $\delta = 130$ ) in addition to the sharp signal of  $D(^{17}O)$  (146).

Figure 1. 54.2-MHz <sup>17</sup>O-NMR spectrum (110000 transients, acquisition time 0.02 s): exchange reaction between **5**<sub>2</sub> and C(<sup>17</sup>O) after heating to 50 °C in [D<sub>8</sub>]toluene; both doublets on top of the broad resonance for **5**<sub>2</sub>, **5**/**10**, and **10**<sub>2</sub> change to singlets by <sup>1</sup>H decoupling and are assigned to Et<sub>2</sub>BOH and (9-BBN)-9-OH<sup>[7b,e]</sup> as a result of partial decomposition of **5**<sub>2</sub>




These experiments demonstrate that the eight-membered ring in  $10_2$ , 5/10 and in particular in  $5_2$  is readily opened and closed. Therefore, one can also assume that the dimer  $5_2$  is in equilibrium with its monomer 5, at least at elevated temperatures (>80 °C). Then it is conceivable that the oxygen compound 5 behaves in a way analogous to the nitrogen derivative 6 [eq. (3b)], suffering  $C_2H_4$  elimination followed by further reactions leading to the formation of ethane,  $Et_2-BOH$ , ( $Et_2B)_2O$  (B), and  $Et_2Se$  (4a).

#### X-Ray Structural Analysis of Compound 102

The data relevant to the X-ray structure determination<sup>[12]</sup> are given in the experimental part, and the molecular struc-

ture of 102 is shown in Figure 2 together with selected bond lengths and angles. The eight-membered ring has  $C_i$  symmetry. The B-O bond length [154.2(3) pm] and the angle O-B-O [107.1(2)°] are similar to those in the eight-membered heterocycle  $[\mu\text{-H-9-(MeO)}_2-9\text{-BBN}]_2^{[13]}$  (154.1 pm; 105.3°). This is also true for the almost perpendicular arrangement (94.2°) of the planes O-B-O and C3-B-C7, and the geometry of the 9-BBN skeletons is perfectly comparable. As expected, the bond angles O-Se-O [99.2(1)°], O-Se-C [97.2(1), 96.1(1)°] are small, and the sum of the bond angles at each of the selenium atoms (292.5°) indicates their pyramidal surroundings. The bond lengths Se-O [171.8(1) pm] and Se-C [193.0(2) pm] are found in the expected range. Owing to the bond angles Se-O-B [117.8(1)] and 122.7(1)°] the eight-membered ring is strongly folded with an angle of 83.8° between the O-B-O and O-Se-O planes.

Figure 2. Molecular structure of the dimeric 1,5-cyclooctanediylboryl-ethyl-seleninide  $10_2^{\rm [a]}$ 



 $^{\rm [a]}$  Selected bond lengths [pm] and bond angles [°]: Se-O1 171.8(1), O1-B 154.2(3), O2'-B 154.2(3), Sc-C1 193.0(2), C7-B 160.1(3), C1-C2 151.6(3), C7-C8 154.0(3); O1-Se-O2 99.2(1), Se-O2-B' 122.7(1), O1-B-O2' 107.1(2), Sc-O1-B 117.8(1), C3-B-C7 108.5(2), Se-C1-C2 112.0(1), O2-Se-C1 96.1(1), O1-Se-C1 97.2(1); angles between planes [°]: O1O2'B/C3C7B 94.2, O1BO2/O1SeO2 83.8, C3BC7/O1SeO2 11.8.

To summarize, it was shown that the reaction of both selenium dioxide (1) and selenium bis(tert-butylimide) (2) with triethylborane (A) proceeds stepwise by 1,2-ethyloboration in the first step, followed by ethene and (for the reaction of 1 with A) also by ethane elimination. For the first time, intermediates were characterized by multinuclear magnetic resonance in solution, and in the case of 10<sub>2</sub> by X-ray structure analysis.

Support of this work by the *Fonds der Chemischen Industrie* is gratefully acknowledged (M.H., S.G., B.W.). We thank Dr. *A. Sebald*, Bayreuth, for measuring the solid-state <sup>77</sup>Se CP/MAS NMR spectrum.

#### Experimental

All reactions and handling of samples for measurements were carried out under argon, strictly observing precautions to exclude air and moisture. — Elemental analyses: Dornis & Kolbe, Mülheim

a.d. Ruhr. – The dried solvents were freshly distilled and stored under argon. – DSC<sup>[14a]</sup>: DuPont 9900. – EI MS (70 eV)<sup>[14b]</sup>: Finnigan MAT CH5. – NMR: Bruker AC 200, Bruker AC 300, Bruker ARX 250, Bruker WM 400 (all used for  $^1\text{H}$ ,  $^{11}\text{B}$ ,  $^{13}\text{C}$ ,  $^{17}\text{O}^{[14e]}$  and  $^{77}\text{Se}$  NMR in solution) and Bruker MSL 300 (solid-state  $^{77}\text{Se}$  CP/MAS NMR); chemical shifts are given with respect to Me<sub>4</sub>Si [ $\delta^1\text{H}(C_6D_6)=7.15;\ \delta^{13}\text{C}(C_6D_6)=128.0],\ Et_2\text{O} \cdot \text{BF}_3$  [ $\delta^{11}\text{B}=0$  with  $\Xi(^{11}\text{B})=32.083971$  MHz], H<sub>2</sub>O ( $\delta^{17}\text{O}=0$ ) and Me<sub>2</sub>Se [ $\delta^{77}\text{Se}=0$  with  $\Xi(^{77}\text{Se})=19.071523]. – The starting materials <math display="inline">2^{[4]}$ , Et<sub>3</sub>B (A)<sup>[15]</sup>, (Et<sub>2</sub>B)<sub>2</sub>O (B)<sup>[16]</sup>, (9-BBN)<sub>2</sub>O (C)<sup>[17]</sup>, (EtBO)<sub>3</sub> (D)<sup>[18]</sup>, and the  $^{17}\text{O}$ -labeled compounds B( $^{17}\text{O}$ ), C( $^{17}\text{O}$ ), and D( $^{17}\text{O}$ )<sup>[19]</sup> were prepared according to literature procedures. SeO<sub>2</sub> (1), H<sub>2</sub>SeO<sub>3</sub> (3) (Merck), and  $^{17}\text{O}$ -enriched ( $\approx 5\%$   $^{17}\text{O}$ ) water (Ventron) were used as commercial products.

X-Ray Structural Analysis of  $10_2^{[12]}$ : Crystal size  $0.41 \times 0.28 \times 0.25$  mm, colorless, T=118 K, monoclinic: a=667.1(1), b=1282.5(1), c=1289.1(1) pm,  $\beta=93.06(1)^\circ$ ,  $P2_1/n$ ; Z=2; diffractometer: Nicolet R3m/V,  $\mu(\text{Mo-}K_\alpha)=3.05$  mm<sup>-1</sup>,  $\lambda=0.71069$  Å, ω scan,  $2\Theta_{\text{max}}=50^\circ$ , F(000)=532 e; reflections: measured 2163, independent 1925, observed 1807 [ $F_0>4\sigma(F)$ ]; empirical absorption correction: max./min. transmission 0.96/0.76,  $R_{\text{merg}}$  0.057/0.046; refined parameters 168; structure solution: direct methods; calculations: SGI Iris Indigo, program: SHELXTL-PLUS; R=0.0266,  $R_w=0.032$ ; max. residual electron density 0.685 e/Å<sup>3</sup>.

<sup>17</sup>O-Enriched Selenium Dioxide [1(<sup>17</sup>O)] and Selenous Acid [3(<sup>17</sup>O)]: Selenium dioxide (1) and selenous acid (3) exchange <sup>16</sup>O for <sup>17</sup>O in a mixture of <sup>17</sup>O-enriched water and [D<sub>8</sub>]THF (ratio 1:2 or 1:1) as shown by the <sup>17</sup>O-NMR signal at  $\delta = 175$  ( $\Delta v_{1/2} \approx 1200$  Hz). A broad <sup>17</sup>O signal of H<sub>2</sub>O under these conditions is found at  $\delta = -6$  to -8 ( $\Delta v_{1/2} \approx 700$  to 1200 Hz, depending on concentration). Dry 1(<sup>17</sup>O) is obtained after removal of THF and water.

2,4,4,6,8,8-Hexaethyl-1,3,5,7,2,6,4,8-tetraoxadiselenadiboratocane ( $\mathbf{5}_2$ ) from 1 and A: A suspension of 479.4 mg (4.32 mmol) of 1 in 1.26 g (12.8 mmol) of triethylborane (A) is heated to  $45-65\,^{\circ}\mathrm{C}$  to give a colorless, clear solution and 1.61 mmol of a gas consisting (MS) of ethane (62%) and ethene (38%). After removal of all volatile material (A, B, D, and 4a) in vacuo (0.001 Torr), a colorless solid is left ( $\delta^{11}\mathrm{B} = 14.0$ ;  $\delta^{77}\mathrm{Se} = 1168.0$ ) which is identified subsequently as compound  $\mathbf{5}_2$ . If the clear solution is heated to  $80-85\,^{\circ}\mathrm{C}$ , further evolution of 2.23 mmol of gas is observed, consisting (MS) of ethane (85.3%) and ethene (14.7%). The <sup>11</sup>B-and <sup>77</sup>Se-NMR signals of  $\mathbf{5}_2$  are no longer observed, whereas the <sup>77</sup>Se-NMR signal of  $\mathrm{Et}_2\mathrm{Se}$  (4a) becomes stronger, and a weak <sup>77</sup>Se-NMR signal ( $\delta = 336.0$ ) appears for  $\mathrm{Et}_2\mathrm{Se}_2$  (4b).

**52** (m.p. 70–73 °C, after recrystallization from heptane: 80 °C; DSC: 79.6 °C, dec. >130 °C). – EI MS, m/z (%): 391 (<1) [B<sub>2</sub>Se<sub>2</sub>], 335 (<1) [BSE<sub>2</sub>], 277 (<1), 237 (<1). – <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 2.17 (4H, CH<sub>2</sub>Se), 1.18 (12H, CH<sub>3</sub>CH<sub>2</sub>B), 0.8 (14H, CH<sub>2</sub>B, CH<sub>3</sub>CH<sub>2</sub>Se). – <sup>11</sup>B NMR (heptane):  $\delta$  = 14.1 ( $\Delta$ v<sub>1/2</sub> = 300 ± 10 Hz). – <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  [J(<sup>77</sup>Se, <sup>13</sup>C)] = 46.2 [69.4] (CH<sub>2</sub>Se), 16.6 (broad, CH<sub>2</sub>B), 10.5 (CH<sub>3</sub>CH<sub>2</sub>B), 5.6 (CH<sub>3</sub>CH<sub>2</sub>Se). – <sup>17</sup>O NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 130.0. – <sup>77</sup>Se NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  = 1168.0. – Solid-state <sup>77</sup>Se CP/MAS NMR (90° pulses <sup>1</sup>H and <sup>77</sup>Se 5 μs, contact time 5 ms, repetition time 5 s, 160 transients, rotation 2855 and 3695 Hz):  $\delta$  = 1174.5. – C<sub>12</sub>H<sub>30</sub>B<sub>2</sub>O<sub>4</sub>Se<sub>2</sub> (417.9): calcd. C 34.49, H 7.24, B 5.17, Se 37.79; found C 34.42, H 7.40, B 5.02, Se 37.24.

The same reaction, carried out with  $1(^{17}O)$ , leads to the formation of **B**( $^{17}O$ ) ( $\delta = 224.0$ ); **D**( $^{17}O$ ) ( $\delta = 146.0$ ), and **5**<sub>2</sub>( $^{17}O$ ) ( $\delta = 130$ ) as shown by  $^{17}O$ -NMR spectroscopy.

**52** from 1 and **B**: A mixture of 111.0 g of 1 (1 mol) and a threefold excess of tetraethyldiboroxane (**B**) is heated at 120 °C for 25 min. The color of the mixture turns first to red-brown and then to yel-

low, and 0.4 mol of gas is set free. <sup>11</sup>B-NMR spectra showed the presence of a small amount of  $\mathbf{5}_2$  ( $\delta = 14.0$ ) and  $\mathbf{D}$  (33.0) in addition to  $\mathbf{B}$  (53.0). The same reaction with  $\mathbf{B}(^{17}\mathrm{O})$ , performed on a small scale for NMR measurements, shows the formation of  $\mathbf{5}_2(^{17}\mathrm{O})$  and  $\mathbf{D}(^{17}\mathrm{O})$  as revealed by <sup>17</sup>O-NMR spectroscopy.

Reaction between 1 and D: A suspension of 0.55 g (5 mmol) of 1 in an excess of triethylboroxine (D) (2.5 g, 15 mmol) is heated at 145 °C for 3 h to give a red-brown liquid. The <sup>11</sup>B-NMR spectrum shows the signal for D ( $\delta$  = 33.0) and a signal at  $\delta$  = 17.6 for compounds with a BO<sub>3</sub> structure.

Selenous Acid (3) and Ethylboron Compounds A, B, and D: Heating of a mixture of 223.7 mg (1.73 mmol) of selenous acid (3) and an excess of A (1.6 g, 16.4 mmol) at 55 °C for 1 h gives 2.2 mmol of ethane (MS). <sup>11</sup>B- and <sup>77</sup>Se-NMR spectra show that the mixture contains A, B, D, Et<sub>2</sub>BOH, and the selenium compounds  $\mathbf{5}_2$  ( $\mathbf{8}^{77}$ Se = 1168.0),  $\mathbf{4a}$  ( $\mathbf{8}^{77}$ Se = 235.0), and  $\mathbf{4b}$  ( $\mathbf{8}^{77}$ Se = 330.0), and at least one unidentified selenium compound ( $\mathbf{8}^{77}$ Se = 176.0). Addition of 1361.5 mg (11.24 mmol) of 9-H-9-BBN in 2 ml of mesitylene and heating at 130 °C for 1.5 h gives 1.74 mmol of  $\mathbf{H}_2$ . The color of the solution turns from yellow-green over red-brown to dark-green, and black selenium precipitates; then the color of the clear solution changes to green, and then to yellowish.

A suspension of 0.64 g (5 mmol) of 3 in an excess of **D** (2.5 g, 15 mmol) is heated at 145 °C for 3 h to give a green solid covered by an orange liquid. The <sup>11</sup>B-NMR spectrum shows the signal for **D** ( $\delta$  = 33.0) and a weak signal at  $\delta$  = 18.0 for compounds with a BO<sub>3</sub> structure.

**52** from **3** and **B**: A mixture of 1.2 g (9.3 mmol) of **3** and 4.5 g (29.2 mmol) of **B** is heated to 80 °C to liberate 0.79 mmol of ethane. The resulting yellow, clear solution is heated at 110 °C for 30 min. Fractional distillation (14 Torr, <25 °C) gives first 1.5 g of a mixture of Et<sub>2</sub>BOH [ $\delta$ <sup>1</sup>H(OH) = 6.07<sup>[16b]</sup>] and **D** and then 2.0 g (0.01 Torr, <50 °C) of a yellowish liquid (**B**, **D**, and, according to <sup>77</sup>Se NMR, **4a** and a small amount of **4b**), leaving 1.4 g (72%) of **52** (with analytical data identical with those obtained from the reaction of **1** with **A**).

Selenium Bis(tert-butylimide) (2) and Triethylborane (A): A solution of freshly prepared 2 (0.33 g, 1.5 mmol) in 2 ml of [D<sub>8</sub>]toluene is cooled to  $-78\,^{\circ}$ C before an excess of A (0.49 g, 5 mmol) is added by means of a syringe. The mixture is allowed to warm up to  $-50\,^{\circ}$ C for NMR measurements. This allowed the identification of the 1,2-ethyloboration product 6, Et<sub>2</sub>Se (4a), aminoborane 8, diborylamine 9, and ethene. The weak  $^{77}$ Se-NMR signal at  $\delta = 711.0$  is assigned tentatively to the intermediate 7.

- 6: <sup>11</sup>B NMR ([D<sub>8</sub>]toluene, 25 °C):  $\delta$  = 17.7 (Δν<sub>1/2</sub> = 80 ± 5 Hz). - <sup>13</sup>C NMR ([D<sub>8</sub>]toluene, -50 °C):  $\delta$  = 45.6 (CH<sub>2</sub>Se), 31.5, 53.7 [(CH<sub>3</sub>)<sub>3</sub>CN], 22.9, 16.9 (broad, CH<sub>2</sub>B), 12.4, 11.8 (*C*H<sub>3</sub>CH<sub>2</sub>B), 4.4 (*C*H<sub>3</sub>CH<sub>2</sub>Se). - <sup>77</sup>Se NMR:  $\delta$  = 1010.0.
- **8**:  $^{11}$ B NMR ([D<sub>8</sub>]toluene, 25 °C):  $\delta$  = 46.5.  $^{13}$ C NMR ([D<sub>8</sub>]toluene, -50 °C):  $\delta$  = 33.2, 52.1 [(CH<sub>3</sub>)<sub>3</sub>CN], 13.1, 11.5 (broad, CH<sub>2</sub>B), 10.4, 10.1 (*C*H<sub>3</sub>CH<sub>2</sub>B).
- 9: <sup>11</sup>B NMR ([D<sub>8</sub>]toluene, 25 °C):  $\delta$  = 57.9. <sup>13</sup>C NMR ([D<sub>8</sub>]toluene, -50 °C):  $\delta$  = 32.5, 49.2 [(CH<sub>3</sub>)<sub>3</sub>CN], 14.8 (broad, CH<sub>2</sub>B), 9.6 (*C*H<sub>3</sub>CH<sub>2</sub>B).

4,4:8,8-Bis(1,5-cyclooctanediyl)-2,6-diethyl-1,3,5,7,2,6,4,8-tetraoxadiselenadiboratocane (10<sub>2</sub>) from 5<sub>2</sub> and C: A solution containing 693.5 mg (1.66 mmol) of 5<sub>2</sub> and 993.3 mg (3.85 mmol) of C in 20 ml of toluene is clear at first and then becomes cloudy. After heating at 70°C for 20 min, the solution becomes clear again, but on cooling to room temp. colorless crystals of 10<sub>2</sub> precipitate. After decantion of the solution, the crystals are washed with heptane and dried in vacuo (0.001 Torr). The yields is 760 mg (88%)

of compound 10<sub>2</sub> as colorless needles [dec. >168 °C (DSC)]. - EI MS, m/z (%): 399 (<1), 387 (<1), 304 (ca. 1), 275 (2).  $- {}^{1}H$  NMR ([D<sub>8</sub>]toluene, 90°C):  $\delta = 2.35$  (H<sub>2</sub>CSe), 2.0, 1.8, 1.62, 0.73  $(H_{14}C_8B)$ , 0.94  $(CH_3CH_2Se)$ . – <sup>11</sup>B NMR ([D<sub>8</sub>]toluenc, 90 °C):  $\delta$  = 13.7 ( $\Delta v_{1/2} = 400 \text{ Hz}$ ).  $- {}^{13}\text{C NMR}$  ([D<sub>8</sub>]toluene, 90 °C):  $\delta = 46.6$ (CH<sub>2</sub>Se), 33.3, 33.6 ( $\beta$ -C), 28.0 (broad,  $\alpha$ -CB), 25.0 ( $\gamma$ -C), 5.2  $(CH_3CH_2Se)$ . -  $C_{20}H_{38}B_2O_4Se_2$  (522.1): calcd. C 46.01, H 7.34, B 4.14, Se 30.25; found C 45.93, H 7.24, B 4.05, Se 30.24.

The O-exchange reactions between 52 and the <sup>17</sup>O-enriched boranes  $B(^{17}O)$ ,  $C(^{17}O)$ , and  $D(^{17}O)$  are carried out on a small scale for <sup>17</sup>O-NMR measurements as described in the text (see also Figure 1).

Organomet, Chem. 1988, 348, 193-197. - [6e] W. Nakanishi, Y. Ikeda, H. Iwamura, Org. Magn. Reson. 1982, 20, 117-122.

- [7] [7a] W. Biffar, H. Nöth, H. Pommerening, B. Wrackmeyer, Chem. Ber. 1980, 113, 333-341. [7b] B. Wrackmeyer, R. Köster, Chem. Ber. 1982, 115, 2022-2034. [7c] B. Wrackmeyer, R. Köster, Analytik der Organobor-Verbindungen in Methoden Org. Chem. (Houben Weyl), 4th ed., vol. XIII/3c (Ed.: R. Köster), pp. 473-474, Thieme Stuttgart, 1984,
- [8] B. Wrackmeyer, U. Klaus, W. Milius, Inorg. Chim. Acta, submit-
- [9] [9a] D. Hänssgen, C. Pattermann, R. Plum, Z. Anorg. Allg. Chem. 1989, 571, 29-36.
   [9b] D. Hänssgen, R. Plum, Chem. Ber. 1987, 120, 1063-1064.
   [9c] D. Hänssgen, R. Steffens, Z.
- Naturforsch., B. Anorg. Chem., Org. Chem. 1985, 40, 919-922.

  [10] B. Wrackmeyer, S. M. Frank, M. Herberhold, A. Simon, H.
- Borrmann, Chem. Ber. 1991, 124, 691–697.

  [11] [11a] D. L. Berger, S. N. Weinreb, Organic Chemistry A Series of Monographs, vol. 47, p. 89, Academic Press, New York, 1987.

  — [11b] M. R. Bryce, P. C. Taylor, J. Chem. Soc., Perkin Trans. 1 1990, 3225–3235.

  — [11c] C. Diaz, E. Benavente, G. Gonzalez, Bol. Soc. Chil. Quim. 1994, 39, 335–337.
- [12] Further details of the crystal structure analysis are available on request from the Fachinformationszentrum Karlsruhe, Gesellschft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen (FRG), on quoting the depository number CSD-401123, the names of the authors, and the journal citation.
- [13] R. Köster, R. Kucznierz, W. Schüßler, D. Bläser, R. Boese, Lie-
- bigs Ann. Chem. 1993, 189-201.

  [14] [14a] DSC measurements: A. Dreier, Max-Planck-Institut für Kohlenforschung, Mülheim a.d. Ruhr. [14b] EI MS: D. Henneberg, Max-Planck-Institut für Kohlenforschung, Mülheim a.d. Ruhr. – [14c] <sup>17</sup>O NMR: R. Mynott Max-Planck-Institut
- a.d. Ruff. 16.3 FO NMR: R. Mynott Max-Planck-Institut für Kohlenforschung, Mülheim a.d. Ruhr.
  [15] R. Köster, P. Binger, W. V. Dahlhoff, Synth. Inorg. Metal-Org. Chem. 1973, 3, 359-367.
  [16] [16a] W. Fenzl, R. Köster, Inorg. Synth. 1983, 22, 188-190. [16b] W. Fenzl, R. Köster, Inorg. Synth. 1983, 23, 193-195.
  [17] R. Köster, W. Schüßler, G. Seidel, Organomet. Synth. 1988, 4, 462.

- [18] R. Köster, W. V. Dahlhoff, J. Serwatowski, G. Seidel, Organomet. Synth. 1988, 4, 433-436.
   [19] [19a] R. Köster, K. Angermund, A. Sporzynski, J. Serwatowski, G. Seidel, Organomet. Synth. 1980, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981, 1981,
- Chem. Ber. 1986, 119, 1931-1952, especially p. 1948. [19b] R. Köster, K. Angermund, J. Serwatowski, A. Sporzynski, *Chem. Ber.* 1986, 119, 1301–1314, especially p. 1311. – [19c] R. Köster, Y.-H. Tsay, C. Krüger, J. Serwatowski, *Chem. Ber.* 1986, 119, 1174-1188, especially p. 1184 and 1188.

[95213]

<sup>[1]</sup> Publication No 124 on boron compounds; publication No 123: R. Köster, G. Seidel, B. Wrackmeyer, R. Boese, Z. Naturforsch., B: Chem. Sci. 1995, 50, 959-968.

A. Arase, Y. Masuda, Chem. Lett. 1975, 419-422.

 <sup>[3] [3</sup>a] R. Köster, G. Seidel, M. Yalpani, Chem. Ber. 1989, 122, 1815-1824. - [3b] R. Köster, G. Seidel, M. Yalpani, R. Boese, Inorg. Synth. 1992, 29, 70-77. - [3c] R. Köster, G. Seidel, D. Bläser, R. Boese, Z. Naturforsch., B: Chem. Sci. 1994, 49, 377-382. - [3c] R. Köster, I,2-Carboborierungen in Methoden
 Org. Chem. Chem. World, Ath. ed., vol. VIII/2a, (Ed.), P. Org. Chem. (Houben-Weyl), 4th ed., vol. XIII/3c (Ed.: R. Köster), pp. 296–303, Thieme, Stuttgart, 1984. – [3<sup>al</sup>] R. Köster, De-elementborierungen in ref. [3<sup>cl</sup>], pp. 216–229. – [3<sup>el</sup>] R. Köster, H. Bellut, W. Fenzl, Justus Liebigs Ann. Chem. 1974, 54–68. – [3<sup>al</sup>] R. Köster, M. Yalpani, Pure Appl. Chem. 1991, 63, 387–394.

<sup>[4] [4</sup>a] M. Herberhold, W. Jellen, Z. Naturforsch., B. Chem. Sci. 1986, 41, 144-148. – [4b] B. Wrackmeyer, B. Distler, S. Gerstmann, M. Herberhold, Z. Naturforsch., B: Chem. Sci. **1993**, *48*, 1307–1314.

<sup>1993, 46, 1307-1314.

[5] [5</sup>a] H. Nöth, B. Wrackmeyer, NMR Spectroscopy of Boron Compounds in NMR – Basic Principles and Progress (Eds.: P. Diehl, E. Fluck, R. Kosfeld), vol. 14, Springer, Heidelberg, 1978. – [5b] B. Wrackmeyer, R. Köster, Analytik der Organobor-Verbindungen in Methoden Org. Chem. (Houben-Weyl), 4th ed., vol. XIII/3c (Ed.: R. Köster), pp. 377-611, Thimse Stattment 1064

Thieme Stuttgart, 1984.

[6a] H. C. E. McFarlane, W. McFarlane in Multinuclear NMR (Ed.: J. Mason), pp. 417–435, Plenum Press, New York, **1987**.

- [6b] M. Lamoureux, J. Milne, *Polyhedron* **1990**, 9, 589–595. - [6c] P. Pekonen, R. S. Laitinen, Y. Hiltunen, *J. Chem. Soc.* **1992**, 2885-2887. - [6d] W. A. Herrmann, H.-J. Kneuper, *J.*